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!BSTRACT

$� HAS CALCULATED THE LUMINOSITY MONITOR CONSTANT FOR
P
R �

��� &D5� 4HE INELASTIC OO CROSS SECTION WAS INTERPOLATED BE
TWEEN MEASUREMENTS PERFORMED AT

P
R � ��� AND ���� &D5�

4HE GEOMETRIC ACCEPTANCE� HARDWARE EbCIENCY� AND LUMINOSITY
DEPENDENT CORRECTIONS ARE SIMILAR TO THOSE PREVIOUSLY PUBLISHED
FOR THE FULL 4EVATRON ENERGY� 7E çND A LUMINOSITYWEIGHTED VALUE
OF },� � �����f ���� LA� YIELDING A PRECISION OF f ���� ��

� )NTRODUCTION

$URING $ECEMBER OF ����� &ERMILAB REDUCED THE 4EVATRONÚS CENTER OF MASS
ENERGY FROM ���� &D5 TO MATCH THE ENERGY OF PREVIOUS PARTICLE COLLIDERS�P
R � ��� &D5� !S A RESULT� THE LUMINOSITY MONITOR CONSTANT �},�	 FOR $�

WAS RECALCULATED WITH NEW VALUES FOR THE ,EVEL � GEOMETRIC ACCEPTANCE� THE
INELASTIC OO CROSSSECTIONS� THE ,EVEL � HARDWARE EbCIENCY� AND THE CORREC
TION FACTORS FOR MULTIPLE SINGLEDIdRACTIVE EVENTS AND BEAM HALO� "ECAUSE
THE METHODS OF CALCULATION FOR },� REMAIN LARGELY UNCHANGED FROM PREVIOUS
DETERMINATIONS ;�=;�= AT

P
R � ���� &D5� THE METHODS RECEIVE BRIEF TREATMENT

BELOW EXCEPT WHERE THEY DIdER FROM EARLIER WORK�
4HE ,EVEL � DETECTOR CONSISTS OF TWO ARRAYS OF SCINTILLATING TILES SURROUND

ING THE 4EVATRON BEAMPIPE AND PLACED ��� CM FROM THE CENTER OF THE DETECTOR

�



ALONG THE BEAM AXIS� 4HESE HODOSCOPES WERE DESIGNED TO DETECT THE PRESENCE
OF VERY FORWARD PARTICLES GENERATED BY INELASTIC OO COLLISIONS� .EARLY SIMUL
TANEOUS HITS IN THE INNERMOST TILES OF ,EVEL � �CALLED ÝGOOD &!34 : HITSÞ	
ARE USED TO CALCULATE THE INSTANTANEOUS LUMINOSITY� 4HE OUTERMOST TILES IN
CREASE THE GEOMETRIC ACCEPTANCE OF THE HODOSCOPES SLIGHTLY AND ÝGOOD 3,/7
: GHSRÞ ARE USED IN OmINE ANALYSES� &URTHER DETAILS OF THE ,EVEL � DETECTOR
MAY BE FOUND IN ;�=�

4HE MULTIPLE INTERACTIONCORRECTED INSTANTANEOUS LUMINOSITY IS GIVEN ;�=
BY

, �
` KM�� `1,�~ �

},�~
�

WHERE 1,� IS THE &!34 : COUNTING RATE� ~ IS THE PERIOD BETWEEN BEAM CROSS
INGS� AND THE LUMINOSITY MONITOR CONSTANT IS DEçNED AS

},� � q,�EHALOE-3$�q3$}3$ 
 q$$}$$ 
 q(#}(#��

(ERE� THE INELASTIC OO CROSS SECTION HAS BEEN SPLIT INTO THREE COMPONENTS
�SINGLE DIdRACTIVE� DOUBLE DIdRACTIVE� AND HARDCORE	 BECAUSE THE GEOMETRIC
ACCEPTANCE �qH	 FOR EACH PROCESS DIdERS GREATLY� 7HILE THE HALO AND MULTIPLE
SINGLE DIdRACTIVE CORRECTION FACTORS �EHALO AND E-3$	 ARE NEGLIGIBLY CLOSE TO
UNITY IN THE RANGE OF LOW LUMINOSITIES EXPERIENCED DURING THE LOWENERGY RUN�
THEY ARE INCLUDED IN THE CALCULATION FOR COMPLETENESS AND CONSISTENCY WITH
PRIOR DETERMINATIONS� &INALLY� THE HARDWARE EbCIENCY �q,�	 WAS CALCULATED
AS A CONSTANT WITH RESPECT TO LUMINOSITY DUE TO THE LIMITED LUMINOSITY RANGE�
4HE LUMINOSITY MONITOR CONSTANT MAY BE INTERPRETED AS THE PORTION OF THE
INELASTIC CROSS SECTION OBSERVABLE TO THE $� DETECTOR� THUS },� IS SOMETIMES
CALLED THE ,EVEL � VISIBLE CROSS SECTION�

� #ALCULATION OF CROSS SECTION VALUES

#ALCULATION OF THE ,EVEL � CROSS SECTION REQUIRES A MEASUREMENT OF THE SIN
GLE DIdRACTIVE� ELASTIC� AND TOTAL CROSS SECTIONS �}3$� }%,� AND }4/4	 AT THE
INTENDED CENTER OF MASS ENERGY� &OR

P
R � ���� &D5� THE WORLD AVERAGE

CROSS SECTION VALUES WERE COMPUTED USING PUBLISHED DATA FROM #$& ;�= AND
%��� ;�=� "ECAUSE THE RESULTS OF THE TWO EXPERIMENTS DO NOT AGREE WELL� THE
UNCERTAINTY ON THE AVERAGE VALUE WAS INCREASED BY A FACTOR OF � AS DESCRIBED
IN 2EFERENCE ;�=�

�



! COMPLETE SET OF THREE CROSS SECTIONS DOES NOT EXIST AT
P
R � ��� &D5�

4HE NEAREST COMPLETE SET OF MEASUREMENTS WERE PERFORMED AT A CENTEROFMASS
ENERGY OF ��� &D5 ;�=;�=;�=� 4HIS SECTION DETAILS THE METHODOLOGY USED TO
INTERPOLATE THE CROSS SECTION VALUES BETWEEN ��� AND ���� FOR USE AT ��� &D5�

)N THE LITERATURE ;�=;�= THE TOTAL OO CROSS SECTION IS EXPECTED TO FOLLOW A
KM �R DEPENDENCE� )N CONTRAST� THE ELASTIC AND SINGLE DIdRACTIVE CROSS SECTIONS
OBEY AN OBSERVED KM R DEPENDENCE ;�=� ! TWO PARAMETER FORM �@ KMM R
A� WAS
USED TO INTERPOLATE EACH CROSS SECTION� WHERE N HAD A VALUE OF � TO çT THE TOTAL
CROSS SECTION AND � OTHERWISE� "ECAUSE THE TARGET POINT OF THE INTERPOLATION
IS VERY CLOSE TO ONE ENDPOINT OF THE çT� THE ERROR AT ��� &D5 IS LARGELY DRIVEN
BY THE ERROR AT ��� &D5� &IGURE � DISPLAYS THE RESULTS OF THE çTS� 4ABLE �
LISTS THE çT PARAMETERS @ AND A� THE UNCERTAINTY ON THE PARAMETERS� AND THE
COVARIANCE BETWEEN @ AND A FOR THE THREE CROSS SECTIONS� 4ABLE � SUMMARIZES
THE VALUES AND UNCERTAINTIES FOUND FOR }3$� }%,� AND }4/4 AT

P
R � ��� &D5�

@ A "NU�@� A�
}4/4 ������ f ������ ������ f ����� `�����
}%, ����� f ����� `������f ����� `����
}3$ ����� f ����� �����f ����� `����

4ABLE �� &IT PARAMETERS� ERRORS AND COVARIANCE�

}4/4 ������ f ����� MB
}%, ������ f ����� MB
}3$ ����� f ����� MB

4ABLE �� #ALCULATED CROSS SECTIONS
AND UNCERTAINTIES AT

P
R � ��� &D5�

4HE çT TO THE TOTAL CROSS SECTION WAS COMPARED TO THE RESULT OBTAINED
BY THE 5!��� #OLLABORATION ;�= USING A MORE COMPLICATED � PARAMETER çT�
5!��� MODELED THE

P
R EVOLUTION OF THE TOTAL OO CROSS SECTION FROM � TO

��� &D5 WITH DISPERSION RELATIONS AND ��� DATA POINTS� 4HEY EXTRAPOLATED
THEIR BEST çT TO ALL DATA TO ,(# AND 33# ENERGIES� THEIR INTERMEDIATE POINTS
ARE SHOWN IN &IGURE �� 4HE 5!��� BEST çT POINTS AT ���� ���� AND ���� &D5
ARE IN EXCELLENT AGREEMENT WITH THE SIMPLER çT TO THE TOTAL CROSS SECTION USED
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&IGURE �� 4HE RESULTS OF INTERPOLATION FOR THE �A	 TOTAL� �B	 ELASTIC� AND �C	
SINGLE DIdRACTIVE PO CROSS SECTIONS� 4HE STARS DENOTE THE WORLD AVERAGE CROSS
SECTIONS AT ��� AND ���� &D5� WHILE THE SQUARES INDICATE THE INTERPOLATED
POINTS AT

P
R � ��� &D5� 4HE DASHED LINE REPRESENTS THE TWO PARAMETER çT�
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FOR THE },� CALCULATION� 4O ESTIMATE THE UNCERTAINTY OF INTERPOLATION DUE TO
THE SIMPLE FUNCTIONAL FORM OF THE MODEL USED IN THE },� CALCULATION� THE VARI
ANCE BETWEEN THE 5!��� EXTRAPOLATION AND THE SIMPLE INTERPOLATION �������
IS INCLUDED AS AN ERROR IN QUADRATURE WITH THE OTHER çTTING UNCERTAINTIES�

!S DETAILED IN REFERENCE ;�=� THE DOUBLEDIdRACTIVE AND HARDCORE COMPO
NENTS OF THE OO CROSS SECTION ARE CALCULATED FROM THE WORLD AVERAGE CROSS
SECTIONS� 4HE RESULTING VALUES ARE PRESENTED IN 4ABLE ��

}3$ ����� f ����� MB
}$$ ����� f ����� MB
}(# ������ f ����� MB

4ABLE �� 4HE CALCULATED COMPONENTS
OF THE INELASTIC OO CROSS SECTION�

� 'EOMETRIC !CCEPTANCE OF ,EVEL �

-ONTE #ARLO STUDIES DETERMINE THE ACCEPTANCE OF THE ,EVEL � HODOSCOPES
BY CALCULATING THE PROBABILITY THAT ONE OR MORE CHARGED PARTICLES WILL PASS
THROUGH THE SCINTILLATING TILES� 4HE PROBABILITIES WERE CALCULATED WITH -"2
;�= AND $45*ET ;��=� TWO MINBIAS EVENT GENERATORS� 3AMPLES OF ���� EVENTS
EACH WERE GENERATED FOR EACH OF THE THREE INELASTIC PROCESSES AND PASSED
THROUGH $�'%!.4 ;��= AND $�2%#/ �THE $� DETECTOR SIMULATOR AND
RECONSTRUCTION ALGORITHMS� RESPECTIVELY	� 4HE RESULTS ARE SUMMARIZED IN &IG
URE �� 4HE -"2 -ONTE #ARLO PROGRAM RANDOMLY SELECTS A DIdRACTED PARTICLE
IN 3$ INTERACTIONS� WHILE $45*ET GENERATES EVENTS WITH EITHER THE PROTON
OR THE ANTIPROTON DIdRACTED EACH TIME� 3OME EVENTS ARE ÝLOSTÞ DURING THE
'%!.4 OR 2%#/ STAGE� BUT THE çNAL SAMPLE SIZE IN EACH CASE IS NOMINALLY
���� EVENTS�

4HE RESULTS INDICATE A SMALL DECREASE IN ACCEPTANCE WHEN COMPARED TO
THE RESULTS OF THE

P
R � ���� &D5 STUDY� &OR EACH SUBPROCESS� THE GEOMETRIC

ACCEPTANCE DECREASED BY �Ô� PERCENT DUE TO LOWER PARTICLE MULTIPLICITY AT
LOWER CENTER OF MASS ENERGY�

�



&IGURE �� 4HE WORLD AVERAGE TOTAL OO CROSS SECTION AT ��� AND ���� &D5
�STARS	� INTERPOLATED TO ��� &D5 �SQUARE	� 4HE DASHED LINE IS THE TWO PA
RAMETER çT� 4HE POINTS FROM #%2.ÚS 5!��� #OLLABORATION �CIRCLES	 ARE
INCLUDED FOR COMPARISON�
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Final numbers from MBR and DTUJet
    for Level 0 Acceptance at 630 GeV CM Energy

TOTAL EVENTS good FAST Z
IN SAMPLE number percent stat error

DTUJet
Single Diffractive, proton diffracted 5997 444 7.40% 0.34%
Single Diffractive, antiproton diffracted 6000 454 7.57% 0.34%
Double Diffractive 5999 4217 70.30% 0.59%
Hard Core 6000 5778 96.30% 0.24%

MBR
Single Diffractive 5957 1102 18.50% 0.50%
Double Diffractive 5979 3946 66.00% 0.61%
Hard Core 5997 5704 95.11% 0.28%

good SLOW Z
number percent stat error

DTUJet
Single Diffractive, proton diffracted 5997 514 8.57% 0.36%
Single Diffractive, antiproton diffracted 6000 527 8.78% 0.37%
Double Diffractive 5999 4324 72.08% 0.58%
Hard Core 6000 5829 97.15% 0.22%

MBR
Single Diffractive 5957 1186 19.91% 0.52%
Double Diffractive 5979 4005 66.98% 0.61%
Hard Core 5997 5743 95.77% 0.26%

 AVERAGES FAST Z ACCEPTANCE SLOW Z ACCEPTANCE
SINGLE DIFFRACTIVE 12.99% ± 6.95% 14.35% ± 0.73%
DOUBLE DIFFRACTIVE 68.15% ± 0.85% 69.53% ± 0.84%
HARD CORE 95.71% ± 0.37% 96.46% ± 0.34%

&IGURE �� 3UMMARY OF GEOMETRIC ACCEPTANCE STUDIES� &!34 : INDICATES THE
NUMBER AND PERCENTAGE OF EVENTS WITH AT LEAST ONE PARTICLE PASSING THROUGH
EACH ,EVEL � HODOSCOPE� �4HE 3,/7 : NUMBERS� INCLUDED FOR COMPLETE
NESS� ARE GERMANE TO DATA TRIGGERS AND LUMINOSITY STUDIES� BUT NOT TO THE
INSTANTANEOUS LUMINOSITY MEASUREMENT�	
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� ,EVEL �(ARDWARE %bCIENCY AND ,UMINOSITY

DEPENDENT %dECTS

��� (ARDWARE %bCIENCY

4HE METHOD USED TO EVALUATE THE ,EVEL � HARDWARE EbCIENCY �q,�	 IS DIS
CUSSED AT LENGTH IN REFERENCE ;�=� "RIEâY� WE DEçNE HARDWARE EbCIENCY AS THE
PEREVENT ACCEPTANCE OF THE ,EVEL � HODOSCOPES FOR EVENTS WITH PARTICLES THAT
PASS THROUGH BOTH ARRAYS� )T WAS FOUND THAT THE SCINTILLATING TILES WERE LEAST
LIKELY TO DETECT EVENTS WITH VERY LOW PARTICLE MULTIPLICITY� RESULTING IN A SMALL
LUMINOSITY DEPENDENCE IN q,�� "ECAUSE THE PARTICLE MULTIPLICITY OF INELASTIC
COLLISIONS AT

P
R � ��� &D5 IS SMALLER THAN COMPARABLE EVENTS AT ���� &D5�

THE OBSERVED DECREASE IN HARDWARE EbCIENCY IS TO BE EXPECTED�
)N &IGURE �� THE HARDWARE EbCIENCY FOUND AT ��� &D5 LIES APPROXIMATELY

SEVEN PERCENT LOWER THAN THE ���� &D5 POINTS AT SIMILAR LUMINOSITY� .O
ATTEMPT WAS MADE TO INCLUDE A LUMINOSITY DEPENDENCE IN THE ��� NUMBER�
THE SINGLE POINT IS USED THROUGHOUT THE LUMINOSITY RANGE �� a ���� TO ��� a
���� BL`� a RDB`�	�

��� -ULTIPLE 3INGLE $IdRACTIVE %VENTS

)N 3ECTION �� THE CALCULATION OF THE GEOMETRIC ACCEPTANCE ASSUMED ALL EVENTS
WERE SINGLE INTERACTIONS� ! SINGLE DIdRACTIVE EVENT HAS A LOW PROBABILITY OF
çRING BOTH ,EVEL � HODOSCOPES BECAUSE THE TRAJECTORY OF THE NONFRAGMENTED
PARTICLE USUALLY REMAINS WITHIN THE BEAMPIPE� !T HIGH LUMINOSITIES� THERE
IS A CALCULABLE PROBABILITY THAT TWO �OR MORE	 SINGLE DIdRACTIVE EVENTS WILL
OCCUR SIMULTANEOUSLY BUT IN OPPOSITE DIRECTIONS� 3UCH AN OCCURRENCE MIMICS
A DOUBLE DIdRACTIVE EVENT AND SHARES THE MUCH HIGHER ACCEPTANCE� 7HILE THE
EXPRESSION FOR THE LUMINOSITY GIVEN PREVIOUSLY ACCOUNTS FOR MULTIPLE INTERAC
TIONS� IT DOES SO IN A SIMPLE WAY THAT NEGLECTS THE EdECT OF MULTIPLE SINGLE
DIdRACTIVE EVENTS �-3$	�

)N HIGHLUMINOSITY ENVIRONMENTS -3$ EdECTS CAN BE SIGNIçCANT� DURING
THE ��� &D5 RUNNING PERIOD� THE EdECT OF -3$ WAS MUCH LESS PRONOUNCED
�SEE &IGURE ��A		�

�
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&IGURE �� 4HE �A	 -3$ CORRECTION AND THE �B	 (ALO CORRECTION AS FUNCTIONS
OF INSTANTANEOUS LUMINOSTIY� 4HE CORRECTIONS ARE EACH LESS THAN ���� AND
PARTIALLY OdSET ONE ANOTHER� $ISCONTINUITIES IN THE HALO CORRECTION ARE CAUSED
BY UNUSUALLY HIGH HALO RATES IN SEVERAL ISOLATED RUNS�
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&IGURE �� 4HE COMBINED CORRECTION FACTOR AS A FUNCTION OF INSTANTANEOUS
LUMINOSITY� 4OGETHER� THE CORRECTIONS REACH A MAXIMUM OF ������
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��� "EAM (ALO #ORRECTION

0ARTICLE ORBITS WITHIN THE 4EVATRON DO NOT ALWAYS FOLLOW A SIMPLE CLOSED PATH�
0ARTICLES WITH A TRAJECTORY SOME TRANSVERSE DISTANCE FROM THE NOMINAL BUNCH
CENTER FOLLOW AN ORBIT THAT OSCILLATES ABOUT THE CLOSED PATH� 4HE AMPLITUDE
OF THESE OSCILLATIONS TENDS TO GROW DURING THE COURSE OF A STORE� EVENTUALLY
RESULTING IN COLLISIONS WITH BEAMPIPE HARDWARE ;��=� 4HE RESULTING PARTICLE
CASCADES CAN PASS THROUGH DETECTORS AND DISTORT PHYSICS MEASUREMENTS� &OR
THIS REASON� ÝHALO EVENTSÞ ARE REJECTED AT THE TRIGGER LEVEL� WITH THE UNFOR
TUNATE CONSEQUENCE OF DISTORTING LUMINOSITY MEASUREMENTS� 4HE CORRECTION
DERIVED FROM MEASURED HALO RATES IS SHOWN AS A FUNCTION OF INSTANTANEOUS
LUMINOSITY IN &IGURE ��B	� �4HE EdECT OF BEAM HALO DEPENDS ON BOTH BEAM
CHARACTERISTICS AND LUMINOSITY� THUS VARYING FROM RUN TO RUN AS HIGHLIGHTED
BY THE DISCONTINUITIES IN &IGURE ��B	� 7HILE THE CORRECTION IS APPLIED ON A
RUNTORUN BASIS THE CORRECTION IS BEST VIEWED AS A FUNCTION OF THE STRONGER
LUMINOSITYDEPENDENCE�	 4HE COMBINED -3$ AND HALO CORRECTIONS ARE LISTED
IN &IGURE �� 4HE EdECT AT ALL INSTANTANEOUS LUMINOSITIES IS LESS THAN ������

� 3UMMARY

$� HAS CALCULATED THE LUMINOSITY MONITOR CONSTANT FOR
P
R � ��� &D5� CON

SIDERING CHANGES IN EbCIENCY DUE TO LOWER OO INELASTIC CROSS SECTIONS� DIF
FERING PARTICLE KINEMATICS� AND LUMINOSITYDEPENDENT CONSIDERATIONS� 4HE
SMALL RUNDEPENDENT HALO EdECT WAS INCLUDED AND THE HARDWARE EbCIENCY
OF THE SCINTILLATING HODOSCOPES WAS REMEASURED� ! NUMERIC INTERPOLATION OF
OO CROSS SECTIONS BETWEEN

P
R � ��� AND ���� &D5 WAS PERFORMED BECAUSE

NO DIRECT MEASUREMENTS ARE AVAILABLE� 7E çND A çNAL LUMINOSITYWEIGHTED
AVERAGE },� � �����f ���� LA� A FRACTIONAL UNCERTAINTY OF f �������

4HE RESULTS OF THE INDIVIDUAL COMPONENTS OF THE CALCULATION ARE LISTED IN
4ABLE � WITH THE çNAL RESULT� .OTE THAT ONLY THE CENTRAL VALUES ARE LISTED�
THE -3$ AND BEAM HALO CORRECTIONS DO VARY SLIGHTLY WITH INSTANTANEOUS
LUMINOSITY�
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q3$}3$ 
 q$$}$$ 
 q(#}(# ������ f ����� MB
q,� ������ f ������

EHALO a E-3$ ������� f �������
},� ����� f ���� MB

4ABLE �� 2ESULTS FOR THE CALCULATION OF THE LUMINOSITY
MONITOR CONSTANT FOR

P
R � ��� &D5�
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P
R � ��� AND ���� &D5Þ� 0HYS� 2EV� $�� �����	 �����
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P
R � ��� 3D5Þ� 0HYS� ,ETT� " ���� ��� �����	�
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P
R � ��� AND ���� &D5 AT #$&Þ� &%2-),!"
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